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Abstract 

Cumulative fatigue damage is known to be the leading cause of aircraft structural and engine 
failure. At the present time, reliable methods for prediction of fatigue crack initiation are not 
available, because the phenomenon starts at the atomic scale. Initiation of fatigue cracks is 
associated with the formation of Persistent slip bands (PSBs), which form inside metals with 
specific microstructure dimensions. In this project, we developed computational methods that 
allow direct simulation of plasticity at the microstructure level, and can hence be used as a tool to 
study fatigue crack initiation. In one task of the project, a dislocation dynamics model that 
incorporates the influence of free and internal interfaces on dislocation motion was completed. 
The model is based on a self-consistent formulation of 3-D Parametric Dislocation Dynamics 
(PDD) with the Boundary Element method (BEM) to describe dislocation motion, and hence 
microscopic plastic flow in finite volumes. The developed computer models were bench-marked 
by detailed comparisons with the experimental data, developed at the Wright- Patterson Air 
Force Lab (WP-AFRL), by three dimensional large scale simulations of compression loading on 
micro-scale samples of FCC single crystals. In another task, we performed large-scale computer 
simulations of fatigue mechanisms in FCC metals and alloys to investigate the formation of 
ladder dislocation structures, the progressive development of PSBs, the interaction of irreversible 
slip events with external and internal surfaces, and the eventual nucleation of fatigue cracks in 
Ni-based superalloys. A summary of the project results is given here. 

Research Objectives 

The main objective of the research was to develop predictive and experimentally verified 
advanced computational capabilities for studying the plasticity of small volumes and the fatigue 
damage evolution. The methodology was based on fundamental material physics at the nano- and 
micro-scale, and was aimed at the development of microstructure-based models of fatigue 
damage in face center cubic metals and alloys. The overall objectives of the project can be 
summarized as follows: 

1. Expand and upgrade the computational capabilities of the Parametric Dislocation 
Dynamics (PDD) at UCLA to include key new features, especially the effects of 
external/internal surface image forces by coupling the Boundary Element Method 
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(BEM) with the PDD method, and the interaction of dislocation ensembles with 
precipitates, the dislocation multiplication, and the dislocation annihilation processes. 

2. The developed computer models are to be bench-marked with detailed comparisons with 
the experimental data base developed at the Wright- Patterson Air Force Lab (WP- 
AFRL) on micro-scale samples of FCC single crystals through. Large-scale 3-D 
computer simulations of micropillers under compression loading are to be performed, 
and from the simulation results an assessment of the crystal-size dependence of the stress 
versus strain response is to be analyzed for cylindrical FCC microcrystals. Statistical 
aspects of dislocation production from crystal surfaces, activation of internal dislocation 
sources, and the cross-slip process are included in this analysis. 

. 

3. The process of Persistent Slip Band (PSB) formation in FCC single crystals is to be 
investigated, and a clear quantitative understanding of the link between the evolution of 
PSBs and the fatigue limit in FCC metals is to be developed. These investigations are to 
be used to calibrate fatigue microstructure evolution physics that can lead to build 
fatigue damage practical and predictive models. 

4. The process of crack nucleation will is to be investigated through detailed atomistic 
simulations. 

In this report, we summarize some of the main results of the projects, and show that all project 
objectives have been met or exceeded. 

Approach and Progress 

Our approach here is to develop predictive computational capabilities for plasticity in 
finite volumes and fatigue damage evolution. Understanding dislocation interaction with free and 
internal surfaces (e.g. grain boundaries, precipitate surfaces, twin boundaries, voids, bubbles, and 
cracks) is essential in a wide range of applications, such as fatigue crack nucleation [1, 2], thin 
film deformation [3], and size effects on small sample plasticity [4, 5]. Discrete Dislocation 
Dynamics (DDD) has been developed to simulate plastic deformation at the meso-scale by direct 
numerical simulations of the collective motion of dislocation ensembles without ad hoc 
assumptions by direct numerical solution of the equations of motion. The approach has been 
successfully used in many applications at the nano- and micro-scales (e.g. [6-9]). However, the 
majority of these approaches are for bulk crystals, with a few exceptions that consider the 
influence of free or internal surfaces (e.g. [8, 10]). Careful assessments of the accuracy 
associated with these numerical methods would be helpful, especially because of the singular 
behavior of the elastic field of dislocations at free surfaces and interfaces. 

An implementation of the Boundary Element Method (BEM) in dislocation dynamics 
simulations is developed to incorporate the influence of free and internal interfaces on 
dislocation motion. The computational structure of the PDD method has a great degree of 
similarity and consistency with the computations structure of the BEM. In the PDD, the fast 
sums are carried over quadrature points and the number of segments on each dislocation and the 
outer summation is over the number of dislocation loops, while the sums in the BEM are carried 
over the number of quadrature points twice and the number of nodes per element and the outer 
summation is finally performed over the number of surface elements. Thus, the computational 



structure of both the PDD and the BEM is essentially the same. It is therefore convenient to 
model the effects of surface image forces with the BEM, while the computational structure of the 
PDD is unchanged. One possible additional advantage of this computational structure is the 
suitability of incorporating acceleration algorithms of conventional particle methods, and as the 
Greengard-Rokhlin fast multipole algorithms. By considering special cases for which analytical 
solutions are known, it is shown that the method is very accurate for calculating surface image 
forces on dislocations. By increasing the surface mesh density for BEM calculations, and the 
quadrature point density on dislocation segments, it is shown that the error can be controllably 
made to be small, and that the numerical solution displays absolute convergence. 

The developed computer models are then bench-marked by detailed comparisons with the 
experimental data, developed at the Wright- Patterson Air Force Lab (WP-AFRL), by three 
dimensional large scale simulations of compression loading on micro-scale samples of FCC 
single crystals. The plastic flow characteristics as well as the stress-strain behavior of simulated 
micropillars are shown to be in general agreement with experimental observations. 

The singular nature of the stress field of dislocations limits the resolution capability of 
DD simulations to 2-3 lattice constants from internal or external surfaces. Additionally, stress- 
induced phase transformations, shearing, cross-slip, looping around precipitates cannot be 
predicted by dislocation theory. The formation conditions of surface cracks are also atomic in 
nature and this type of information must be supplied to DD simulations for accurate predictions 
of dislocation interactions outcomes. 

Ml) Simulations of Dislocation Nucleation 

The limitations of our 
proposed PDD-BEM method was 
addressed by informing these 
simulations from the results of 
atomistic Molecular Dynamics (MD) 
calculations. These limitations are: 
(1) nucleation conditions and rates of 
dislocation loops, (2) singularity of 
the stress field at interfaces, 
precipitates and boundaries, and (3) 
re-configuration of precipitates or 
other small obstacles to dislocation 
motion by shearing or total 
destruction. We designed 
simulations on single dislocations 
using the MD technique, and then 
passed this information to larger 
systems for more detailed DD 
simulations.   The  MD   simulations 
were performed on copper and nickel to study the interaction of dislocations with (a) external 
surfaces, (b) grain boundary, and (c) y'-precipitates. Mishin potentials, which have been 
calibrated, to  reproduce ab  initio values  of stacking  fault energies  were used  in these 

Fig 1. Atomistic Simulations of twin-boundary dislocation 
nucleation from a free surface 



calculations. Defects inside the simulation cell are visualized by a local crystallinity 
classification method that, to capture both the number of nearest neighbors and the central 
symmetry character of individual atoms. In addition, we have implemented the atomistic Nye 
tensor analysis developed by Hartley and Mishin [12] to identify the dislocation character of 
defected zones. Stress-strain relations are also calculated. From these result it is possible to 
determine the nature of the deformation mechanism and the outcomes of dislocation interaction 
with various boundaries. An example of the mechanism of dislocation loop nucleation from a 
twin boundary is shown in Fig. 1. 

Dislocation Dynamics Simulations of Micro-Plasticity 

As an application of the current 
methodology, the PDD-BEM was utilized 
to study the size effects and the single-slip 
behavior of micropillars through a large 
scale 3-dimensional simulation that 
mimics the experimental conditions [4, 5]. 
The plastic response of micropillars under 
compression loading for sizes in the range 
of D = 0.25 - 5.0 urn is studied. The size 
effects on the flow stress are clearly 
observed and the results are in complete 
agreement with experimental observations. 
Plastic flow arises from the collective 
motion of dislocations within the volume 
of the micropillars. The effect of applying 
a strain controlled loading versus a stress 
controlled loading is studied and shown in 
Fig. 2-(a) for different micropillar sizes. In 
addition, a number of parameters and 
mechanisms (e.g. micropillar size, average 
length of activated single-pinned 
dislocations, and cross-slip activation) are 
examined in an effort to identify size 
scaling aspects of plastic flow and work- 
hardening. It is observed that plastic flow 
is intermittent and not continuous. By a 
thorough study of the microstructure 
evolution, the observed size effects on the 
flow strength are rationalized here on the 
basis of a statistical variation in the length 
of single-pinned dislocation sources in the 
crystal. In addition, a number of scaling 
laws that relate the flow strength to the 
micropillar diameter, and the average 
length      of     activated      single-pinned 
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Fig. 2. Stress-strain relations for: (a) simulations without cross- 
slip activation using a strain controlled technique (solid lines) 
and stress controlled technique (dashed lines); (b) simulations 
using stressed controlled technique with cross-slip activation 
(solid lines) and without cross-slip activation (dashed lines). 



dislocations were developed. The dislocation density evolution is observed to be cyclic and a 
Fast Fourier Transform analysis revealed that dislocation activities in the volume are cyclical as 
well. In addition, the activation of cross-slip is shown to have a significant effect on work- 
hardening (Fig. 2-(b)). Finally, the observed size effects are shown to be consistent with a 
"weakest-link activation mechanism". 
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Simulations of Saturated Fatigue Strength 

In addition, we devloped models of 
localized plastic deformation inside Persistent 
Slip Band channels. The interaction between 
screw dislocations as they pass one another 
inside channel walls in copper was 
investigated. The model showed the 
mechanisms of dislocation bowing, dipole 
formation and binding, and finally dipole 
destruction as screw dislocations pass one 
another. The mechanism of (dipole passing) 
was assessed and interpreted in terms of the 
fatigue saturation stress. We also presented 
results for the effects of the wall dipole 
structure on the dipole passing mechanism. 
Details of the shape of the screw dislocations 
as they simultaneously bow out in between 
the walls are seen to have a considerable 
effect on the passing stress, thus validating 
the need for accurate DDD simulations. In 
Fig. 3, the passing stress (Maximum applied 
resolved shear stress) as a function of the initial distance between the screw dislocations. 
Different analytical estimates are shown in addition to the dislocation dynamics results. In 
addition, the long range internal stress field in the edge dislocation dipolar walls is seen to have 
an effect on the passing stress as well. It follows that the passing stress in the middle of the 
channel is reduced to the following limits: 16.8 < Tpass < 20 MPa, which is in agreement with the 
well-established fact that the stress acting locally in the channels of the heterogeneous PSB 
structure are modified markedly from the macroscopically applied value by long-range internal 
stresses [13]. In fact, it is reported that the stress acting locally in the channel is lowered to about 
16 to 17 MPa [13], which is in reasonable agreement with the current numerical predictions. 
Finally, from large scale simulations of the expansion process of the edge dipoles from the walls 
in the channel 

Initial Distance between the 
Screw Dislocations (UJTI) 

Fig. 3. Passing stress (Maximum applied resolved shear 
stress) as a function of the initial distance between the 

screw dislocations 

Simulations of Fatigue Hysteresis Loops & PSB Microstructure 

We performed large-scale simulations of the expansion process of the edge dipoles from the 
walls in of PSB channels. This gave a better assessment of the stress distribution throughout the 
channel and the effect of the long range internal stress field. An interesting outcome from these 
simulations is that screw dislocations in the PSB channels may not meet "symmetrically", i.e. 
precisely in the center of the channel but preferably a little on one or the other side. For this 



configuration the passing stress will be lowered which is in agreement to experimental 
observations [14]. Representative results of these simulations are shown in the Figures (4-6) 
below. 
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Figure 4: Dislocation Microstructure within the PSB channel (3D - top), and plan view (bottom) 
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Figure S: Successive PSB dislocation microstructure corresponding to a full fatigue hysteresis 
loop (bottom) 
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Figure 6: Plan view of fatigue dislocation microstructure and corresponding stress-strain 
hysteresis loop. 
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